
You can link to the last RSS article here: R Techniques: Summarizing Data By Grouping Variables  Ed. How Long Should My Data Analysis Take?By Dr. Rich Herrington, Academic Computing and User Services, CITCThese thoughts (disclaimer at the bottom of this column* ) are motivated by the "quickfix", "take the shortcut" mentality that I am seemingly surrounded with on a daytoday basis....this was a real question posed to me: The comment: I was told by 'soandso' that it should take no more than two hours to clean, and 'run' my data. What do you think? My long reply to the student: Yes, two hours is a reasonable estimate of how long it might take to finish your data modeling/analysis project IF ONE WERE TO:1) IGNORE checking assumptions of the parametric model(s) being generated, and ignore any steps necessary to "correct" for those problems found (e.g. normality of residuals, issues of heteroscedasticity, lack of independence in observations  most people completely ignore this last item (independence)...that is looking for the presence of clustering (e.g. presence of a "significant" intraclass correlation)....in other words, effects due to undetected or unrecognized clustering (lack of random samples). While some may feel this is unnecessary, it is completely clear that violations of this assumption are devastating for model validity (one might even think of this lack of independence as a model misspecification). 2) Along the lines of 1), IGNORE any issues with bias generated due to missing values and the pattern of missingness that might be present. Many people incorrectly model missing values because they assume (in an unthinking way) "missing completely at random" (MCAR). MCAR is not usually a reasonable condition that can be met with confidence. Even so, one would like to know how that missingness is presenting itself in the observed data (e.g. numeric or graphical displays that depict patterns of missingness are very helpful here). 3) NOT validate any of the fitted models after estimation (e.g. crossvalidation; bootstrapvalidation, etc). 4) NOT produce a calibrated model (with calibrated beta coefficients) after validation, that takes into account the optimism (bias) of the originally fitted model (e.g. optimism in R^2)...additionally, do not estimate the predictive validity of the model after calibration for bias. 5) NOT produce revised pvalues or CI's for the significance tests of model fit that take into account the potential bias in R squared (numerical index of model fit that, in small sample sizes, is a biased estimate of the population estimate of R squared). 6) NOT generate confidence intervals for effect sizes and not generate graphical based displays of those intervals for communicating succinctly the main information concerning the parameter estimates (e.g. CI's for Rsquared or Cohen's f effect size). 7) IGNORE any issues concerning uncertainty in the "model selection" stage  e.g. using variable subsets from the original set of variables. That is, ignoring any adjustment methods that would take into account overfitting and account for inflation of error rates when searching through potential models  either type I, II, or some false detection rate (FDR) error rate. 8) IGNORE the power (sensitivity) of the statistical test. If one's data is a LARGE data set, then it is likely that the sensitivity for statistical tests (power) will not be an issue for effects sizes that one cares about. But, if it were, how would we deal with the fact that your data is observational?  in these situations it is not uncommon to have low aposteriori power (not that this is a meaningful concept anyway) given a small sample size. This issue is problematic with a lot of folks. Many people just don't accept that "power" (within the NeymanPearson framework) was and has always been a design parameter that predetermines the expected operating characteristics of the hypothesis(s) test; and that this apriori probability (if design procedures are followed appropriately) is more meaningful and useful if predetermined before sampling occurs (along with sample size, test threshold "alpha", and the expected difference  the "effect size"). It is clear that after data have been collected (with a predetermined critical threshold, and sample size), that the observed pvalue for the data and the power are completely codetermined. For the observed effects size and observed sample size, the power will be small when the pvalue is large, and viceversa. Power is for the most part a useless concept after data collection (within the inferential framework of NeymanPearson). So, again, for a fixed sample size and low power with observational data  what valid conclusions can one draw? How can one use all of the available evidence, in hand or otherwise, to maximize the utility of the study? 9) NOT appreciate that classical inference
based on thresholds (or critical values) and error rates (Type I and
Type II) was not designed to provide "evidence" in a single study
toward the hypotheses under consideration. Classical inference as
taught in introductory statistics courses has been considered by some
to be a contentious synthesis of two (arguably irreconcilable)
inferential
a) Fisherian pvalues under the NULL hypothesis designed to
provide evidence of the This is all to say that drawing conclusions about how the data "in hand" informs the hypotheses under consideration is tricky business at best and is certainly NOT automatic  this process takes time and careful thinking! An approach that some folks advocate is to take the observed pvalues under the null sampling distribution (and under appropriate conditions), generate "bayes factors" to supplement the information that is obtained using the hybrid logic of the Fisher and NeymanPearson framework. Note that there are many readable accounts that inform one of these methodological considerations...it seems that most folks just don't want to take the time. What Researchers Could Be AboutProbably the most important task for the data modeler is to make sense out of what the fitted model(s) communicates, in light of the semantic, theoretical framework that one has provisionally adopted prior to the model development stage. With an eye toward our best inferential model, we should be attempting to reduce bias, optimize predictive validity, and (when realistically possible) increase the interpretability of the fitted model  the "bottom line" so to speak. No personal offense is intended toward anyone in these next statements: it is clear (to me at least) that it doesn't matter: 1) How long one has been teaching or applying disciplinary specific methodologies to model data; 2) It doesn't matter how much credentialing one has behind their name; 3) And it doesn't matter how many other
esteemed people are willing to line up and tell you how Data Modeling as an Evolving Body of PracticesData modeling (as a science or an art) is an evolving body of practices  much critical debate gives rise to new practices; that all conscientious researchers (modelers) contribute to by thinking thoughtfully about their data; and hopefully, subsequently share those thoughts with the WIDER community of practitioners and theoreticians. Hopefully, a truly WIDER community: ecology, epidemiology, biology, psychology, education, sociology, political science, economics, business, medical informatics, etc. To be out of touch with that changing body of practices is to be going against the grain of the current learned experiences of that wider consensus. While this is NOT NECESSARILY a bad practice, I would think that ignoring consensus should NOT be done lightly; it should NOT be done without awareness or without a worthy purpose in mind. When ignoring the experience of others, it probably goes without saying that it should not be done out of "laziness". Here are what I think are some good indicators of how one might compare in relation to that WIDER community: How A Researcher Might Compare to the Wider Methodological CommunityIF, one is "of the mind" or "practicing" the following: 1) REFLEXIVELY utilizing standard fare null hypothesis significance tests as presented by the bulk of introductory applied statistics textbooks. That is, focusing on classicalfrequentist observed pvalues under assumed, random influence, hypotheses (i.e. null hypothesis), as the main evidence in drawing conclusions about the data; 2) Believe that using data imputation methods for missing data is somehow "cheating"; 3) NEVER use nonparametric, semiparametric, and robustly estimated models; 4) Stick RIGIDLY to confirmatory practices while ignoring the importance of "exploratory practices" in the initial stages of model development (and I mean exploratory in: after data has been collected); 5) Think that "Data Mining", "Knowledge Discovery", etc, is somehow "beneath" serious data modelers; 6) NOT APPRECIATE how resampling and simulation based methods have revolutionized the practice of statistics (e.g. applications of the Bootstrap and Monte Carlo Markov Chain estimated modeling); 7) NOT APPRECIATE that a multivariate (or
multivariable) approach should be a "first choice" modeling framework
that is utilized (that is only to say that it should be adopted more
often)  not a univariate framework; And that a univariate framework
should be the exception to the practice. Statistical models in
nonexperimental settings (and arguably in experimental settings as
well) are only going to have external or ecological validity to the
extent that complexity in the "real world" (as 9) NOT APPRECIATE the importance of Bayesian inferential logic (and other alternatives) as complimentary to, or as a replacement for classical frequentist inferential logic (e.g. using "Bayes Factors" in lieu of, or as a compliment to observed pvalues under and assumed sampling distribution; and/or using Bayesian "credible intervals" from a posterior distribution, rather than confidence intervals based on NULL sampling distributions, whenever the statistical models are based on medium to small sample sizes, and/or the possibility of choosing reasonable priors for parameters exist. THEN: I would suggest that one is out of touch with emerging methodological trends that are becoming evident in a number of disciplines. Methodological wisdom evolves, so must the basic pedagogical practices that communicate those evolving methods. A Common SentimentExamples of a common sentiment that reflect this lack of evolution in thinking, in my experience (more often than NOT), are demonstrated by variations on the following statement: "I just want to make sure that students can interpret a ttest, a correlation and a probability value, and get the interpretation of the null hypothesis correct...to be able to use confidence intervals and effect sizes correctly..." A seemingly well informed position to have  at least an optimistic position. However, from one perspective, this position is shortsighted when judged from an awareness of the history of science, education, public policy, and the relationship amongst them. These methods are but one small part of a number of limited tools, in a larger set of decision science tools that contribute to lowering decision uncertainty, for potential actions of individuals in both a private and public arena (e.g. "Do I use drug XYZ for myself or for my family? Is genetic engineering safe  what do we mean by safe?, and safe for whom?, How can we model and predict the next pandemic outbreak?, Is global warming a real phenomenon?, how do we take measures to reverse the potentially ongoing negative impact that humans have on worldwide climatological and ecological changes?"). Our problems are complex; Our interactions with ourselves and our world are complex, so why should the decision tools that we use to deal with this complexity be neatly and narrowly circumscribed? Now for the global, cynical generality  Seems to me that for the most part, introductory statistics courses, for your generic institution, do students a disservice  we train students to expect "neatness", and "tidiness" for the sake of pedagogical closure. Student's come out of these methods courses looking for the correct formula to "turn the crank on"; look for that software button to push to provide the expected answer. We inspire algorithmic thinking in the pursuit of credentialing...so that nowadays, it seems that critical thinking is one of those obvious decision science tools that has NOT been taught and is in sparing use. An Alternative SentimentConsider the following statement as a potential alternative sentiment: "I want students to be able to think critically, creatively, and substantially about data in a way where their understanding is not led astray by the singular inferential framework and methodology that happened to be adopted. To understand that in the end, what is wanted by most, are helpful suggestions as to which optimal decisions can be made about important, uncertain, future, events that occur in each of our lives. That, at the end of the data modeling process, the specifics of certain, select statistical models, are mostly beside the point. Whereas, the generalities of the statistical models, taken as a whole, can and often do provide a larger range of useful solutions for resolving decision uncertainty. Furthermore, I want students to appreciate that a pluralistic approach to inference is a real strength, bordering on mandatory, and that picking only one inferential framework as a "lens" to the data is an impoverished strategy (possible lenses: Classical Frequentist based inference, Information Theoretic and Likelihood based inference; Bayesian inference; Algorithmic and Settheoretic based approaches  e.g. Data Mining, Machine Learning and AI approaches). In other words, I want students to recognize the potential danger in allowing the modeling technique, by its very epistemological nature, to create a narrow (possibly biased) view of the data. Similarly, I want students to understand that it is important to NOT pick the question just so as to allow for the convenience of using, in an unthinking way, a singular, default inferential framework  I suppose one could put this more colorfully as: 'There is a real danger in letting the tail wag the dog' ". Side note: I offer the following, much seen example, as evidence of the "tail wagging the dog" phenomenon: using the median to create groups from continuous data whereby mean differences are statistically tested using hypothesis tests using the classical frequentist logic  forcing what is regression with continuous data to be data that is convenient for an ANOVA framework. In the End, There Are Just More Questions"Lastly, I want students appreciate that truth lies in paradox, and that one way to get to the heart of paradox is to critically examine assumptions  one doesn't do this by avoiding questioning for the sake of neatness  for the sake of pedagogy  for the sake of progress. In the end, we (researchers, citizens of our respective countries, one species among many on planet Earth) have NOT fulfilled our better 'nature', if we are not left with a sense of awe, mystery and curiosity  if we are not left with more questions." My Short
Reply To The Student 
